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ABSTRACT

In Technical Report 4,4' several definitions and theorems were
presented to aid in the analysis of a sub-class of non-stationary pro-
cesses consisting of a random component and a continuous non-random
function of pime, each component defined over the same finite time
interval. This report supplements the results of Technical Report 4
both by extending the sub-class of non-stationary processes under con-

sideration and by including additional theorems.

’Ref:rcncel sre )iated at the end of this report,
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I INTRCDUCTION

This report is divided into three sections., Section I summarizes
some of the results of Technical Report 4! Section II describes both
theorems that are natural extensions to those of Technical Report 4, and
extensions to the sub-class of processes considered in the above report.
‘Section III indicates areas for further investigation. The approach
followed in the first two sections is to generalize or extend the power
spectral density function for stationary stochastic processes so that
it may be applied to non-stationary stochastic processes. That is, the
approach follows from a desire to obtain, from the observation of a
time-dependent non-stationary signal, the energy contributions at one
or more average frequencies. The time interval of observation is to
- be sufficiently large that an energy contribution to an average fre-
quency may be extracted, but not so large that the process changes
appreciably during the time of observation. Thus, through successive

observations, the change in average frequency may be observed.

Consider a random process {¥(t)} consisting of an ensemble of member
functions y, (t), m = 1,2, ..., M, defined for the interval 0 < ¢ < 2T.

For this process the autocovariance Y(7) is redefined as

DEFINITION 1

VT = BUL ()] T EU, (GIEDA ()]
where
T
1
= = t)dt
AY.(‘) - Tfy'( )

0

1 T
Ay Cery T ?J)’_(t tryde , 0 <7 <T

0



and

T

A Jy.(t)y_(t tr)de, 0<TST
[

-1
y.(tiy.(‘*r) = 'E

The power spectral density function ®(w) of the process {Y(e)} is
given with respect to Y(7) in the usual way except that the interval

over which the Fourier cosine transform is performed is finite, hence

DEFINITION 2

¢(m”1) =

3|

T
J Y(7) cos nw,TdT
0

where

wTT = 27

The preceding definitions are applied to a subclass of non-stationary
stochastic processes represented by those processes {Y(t)} consisting of
member functions y,(t), m = 1,2, ..., M and te[0, 2T} which may be rep-
resented by '

y (t) = 6 (t) + f(t)

where & _(t) is a member function of a stationary stochastic process
{8(t)} and f(t) is a deterministic function inducing non-stationarity
and is statistically independent of 6 (t). In particular, the ensemble
{Y(t)} is said to satisfy

Condition [A]

(1) Gl(t) has c.d.f.} G(@_) with — © < 9_ <+ ® for every m = 1,2, ..., M
and each tel[0, 2T]..

'Cullul-tin distribution function is abbreviated c.d.f.



(2) E[6,()] = E[0,(t + 7)) = EL6] = ] 6dG(6) < @ for every m =
1,2, ..., M and each te[0, 27]. -®

(3) f(t)el, where L, is the class of square integrable functions.
-The following theorems have beer proven in Technical Report 4.

THEORENM 1

Given an ensemble of member functions y'(t) = 9-(t) + f(t) satis-
fying Condition (A}, then the autocovariance, Y(T), of the process is

separable into two components such that
W(TY = Ye(T) ¥ ()

where

PglT) E[6(t)6(¢ + 7)] - E*[6(¢)]

and

YAT) = Arpierm T ApC0Afeem

Theorem 1 shows that if f(t) = 0, the autocovariance, Y(7) = Y,o(7),
"is the accepted definition for stationary stochastic process. Similarly,
if 6,(t)= 0 for all n end if f(t) is periodic with fundamental period T,
then the autocovariance, Y(7) = ¢,(T), is the accepted definition for

periodic functions,

THEOREN 2

The power spectral density function, ®(nw,), for an ensemble of
member functions y (t) satisfyiny, .ondition [A} is separable into two

components such that

®(nwp) = Bp(nwy) + @ (nwy)



where

T
Qg(nwr). = '%‘J Yo(T) cos nw, TdT
()
and
i T
@,(nwr) = T J wf(T) cos nw,TdT
0

This theorem follows directly from Theorem 1 and from the fact that a

Fourier transform is a linear operation.

If in the preceding theorem ¢I(T) = 0—e.g., f(t) = 0—then

3 j=

ii{.’l (riwy) = #lﬂl bylnwy) = ®y(w) =

J ¢6(T) cos wrdT
0

is an acceptable definition for the power spectral density function of
a stationary stochastic process; and if Yu(7) = 0 and f(t) is periodic
with fundamental period T, then @(nwr) = ¢f(nw1) represents a definition

for the power spectral density function of a periodic function.



IT EXTENSIONS

Generally, in applications of power spectral density methods, an
additional condition is imposed on ensembles {Y(t)} satisfying
Condition [A] so that estimates of ®(nw,) may be obtained from a single
member function y (¢). The additional condition is one of ergodicity

end is stated as follows:

Condition [B]

For the random component‘e;(t) of Condition [A]

® N o T
E[6) « I 6dg(6) = E[6.(t)] = lim{-l- b3 8(t)} = lim{lj G(t)dt}
—-oo‘ * T-o IM =1 ® ¥~ |T 5 »

T
L)
E[6) = Elo(t+m)] = lin: 5 g(t+s) = 1im{-1-j 6 (t +T‘)dt}
- H-o i a=1 T |T) %

(]

El6(t)6(t +7)] = J O(£)6(t + T)dH[O(t), 6(t +7)] = E[6 ()6 (t +7)]

M T
= Hm%320(06u+7%-=1h{%[6hﬁ@+¢ﬂ%
W~ |M =1 * » i T~ |T ! L] L]

wherz the time averages hold for each value of m = 1,2, ..., M, and
~HEO(t), 6(t + 7)] is the joint c.d.f. of 6(t) and 6(t + 7)

Applications assuming ergodicity imply that the frequency analysis
is derived from a single member function, indicating that an estimate
for Y(7) must be used in place of Definition 1. Thus the following

estimates are defined:



DEFINITION 3

T
Bro ) - ! [ 6_(t)dt
T "
A 1t
El6_(¢ + 7)] = J O (t + 7)dt
- ) 7
A 1 T
EL6, ()6 (t + T)] = Ff 6.(+)6 (¢ + )
o

A A A

E[@n(t)] and E[G;(t + 7)] are estimates for E[f], and E[@_(t)e’(t + 7))
18 an estimate for E[Bn(t)ﬁl(t + 7)] in the sense of Condition [B]. The ex-
pressions in Definition 3 permit an estimate for Y(T)—namely, Q(T)-—which

is given as follows:
DEFINITION 4

N .

Valm) = Ay oy ceem T Ay GOy G
and for the random component

A

¢9_(T) - AB'(t)B.(t+T) “As (fe (e4r)

A A
Note that‘¢f(T) = ¢f(T). Using the expression for ¢.(T), an estimate for

the power-spectral-density, Q(nwr), is given by Definition 5.

DEFINITION §

T
A
[ Y, (1) cos nwyrdr
0

A
Q(nwr) =

-

A
Because of Conditions [A] and [B] and Definitions 1 through 5, ¢_(nwr) is

an estimate for Q(nwr) in the sense of the following theorem.



THEOREM 3

. 1 X
Let (I)”(nw.,.) " — 21 &\)_(nwr). Then for a non-stationary process
ax )

{Y(t)} containing memge‘r functions y (t) satisfying Conditions [4] and [B],

T
Lim {®,( )} ,¢(w)+l li {igl\(%] d
Lim {®, (nwy fnwy T J [,&.’3 o, t/;e. T cos nw,TdT
) ‘
and by an additional limiting process
%152 Lim @, (nwp)} = @ (nw,) + Qylnw,s

" Proof:

By Definitions 4 and 5

T
A ‘ 1 "
®, (reoy) FJ [Ay_‘(t)y.(ﬁ'r) _‘Ay_(‘t)Ay,_(‘H'r)]: cos nwrdr:
0

1
r
0

M L T
-J y (t)y (t +7)de — — J y (t)dt | y (¢t + T)dt| cos rerdT‘
T 0 » n Tz o n "

-
~ e
~3 |

T[T T T
- 7] [ | e+ mae + [ rorsee + myae +ﬂ 6(0)f (¢ + m)de
. 0 0 0

0

T T T

+ -I-J 6(t + T)f(t)dt ~-l J G (t)dt J' B (t * )dt
’I‘ 0 L) Tz ) n : -

T T 1 T T
[ seerte [ 06 +mrae == [0 orae [ s s mye
| "
] [}

0 [4

_ 1
T2

T T
- '-I-J O.(t +7)dt J f(t)dt] cos nw,,rd'r
T2
0 ) .



T
N ?J EAa_(:)e_( ) " Ae (o (err) T Apco fees)
o L .
—Af(g)At‘(Hﬂr) +B(y.)] cos TICUT'rdT
1 A |
= O (nwy) + T J [mp,;_('r) +R(y )] cos nwgdr
[(] .
where
1 (" 1 (" T
R(y,) - 'T‘J g(t)f(t + 7)de - J@_(t)dt J f(t + T)de
0 L ()
1 T 1 T T
+;J g(t + 7)f(t)de - ——J 6.(t + T)dt J' f(t)dt
7‘2
0 0 )

Now R(y.) has the following property as a result of Condition [B]:

1 ¥ T
5::;1 m .él [FJ Rly,_) cos an'rd'r:l
(]
1 ([ [1o# |
= ? l 532  ; .§1 Ry ) cos anTdT

"TEwy (7 E©6) [ E6) [
= J [‘——-[f(t +-r)dt—T J f(t+ 7)dt +LT_) [ f(t)dt
0 0

5 .

El6]
- T J f(t)dt] cos anTdT = 0
0

A
Summing Q_(nwr) for m = 1,2, ..., M, and taking the limit as M — ©, we

establish the first part of the theorem—i.e.,



N , A
Lin @0} = nm{l 3 0, (nw)
- ]

' sl fingl 5
= tl),(nwr) 7 J' [n»m{M 2, xp¢.(7’)}] cos nw TdT
° 5

Now to consider the limit as T — ® we note that

1 T T

T 1
Lim (%_(T')} = I-im{- J g(r)6(t +7)dt = 1;[ B_(t)dtj 6.(t +’r)dt}
[} 0 0

T=® T (T

From Definition 3 this is equivalent to

Lin W (M) = Lin (E16,(0)8,(+ + 1)) - El6,()1B6 (¢ + ™)1}

and by Condition [B] and Theorem 1,

Lin @5 (1)) = ELO(0)6( + 7)) = E2(6] « yo(r)

Now consider the limit as 7 — ® in the term

1 ¥ ! A
kig P !él ‘ I }ig {¢9.(T)} cos nw,rdr|
)
tind: 5 | ‘T¢ () d
lim ¥ TJ o(T) cos nw dr
(]

®g(nwr) as a result of Theorem 2

3
~ |-

Thus lim lim {¢”(nw7)} = ¢f(nw1) + ¢e(nw1) and the proof of Theorem 3

. M- T
is concluded.



As given by Theorem 2, QI(an) was defined with respect to the time
of observation, T; and the calculated frequencies are multiples
(harmonics) of the fundamental frequency, w,. However, suppose {r(e)}
is stationary where f(t) is a periodic function with fundamental period
Ty = 27/wy. It is then desirable to know the relation between the calcu-

lated frequencies and the harmonics of @y. Since

B
1
Q,(nwb) - ;{ 1 ¢fN(T) cos nwadT
then
Nq
n 1 ) n
Qf Na).o = N—TO-J’ n/rf”(T') cos‘-ﬁ w,TdT
()}

will exhibit the fundamental frequency, wy, when n = N, and will exhibit
harmonics or multiples of w, when n = 2N, 3N, 4N, .... The notation ¢!~
is shorthand for

”1.

1 ‘
N ﬁl FOf( + T)de = f2
where
NT NT
f = —}—~ ; t)dt L ° f(t + 7)d
_NTJ ( ENTJ (¢ + 7)de
0 °

The following theorem éstablishes a relation between the calculated and

actual frequencies.

THEOREN 4

For f(t) ¢ L,, a periodic function with fundamental angular frequency
. Wy and fundamental period To,

lim {®,(nw,)} o [~
. N, = — B
r=NT, AT \y “o

10



and

N2 Y +2
|9, (noy) - d’;(: “’o) L1y 8 u
N+ /E N (N+pB)?

where
T = (N+BTy, N>21, 0<B<1, and f, = og\g,’o-;lf(:\)‘l

Proof:

T T T

Take ¢4 () = lj fCeif(e + 7)de "—l-j f(t)d‘tj fle + 7)dt
T i

2
0 ™ 4 (]
We may write each integral in two parts, as follows:

NT,y

. T
by =3[ sosc s +%l FOf(e + Tt

[ '1'o

1 (T N7 T ‘ NTy T
- —,{U f)de +[ f(:)d:]U f(¢ + )t +f e+ T)d:]}
T | T, ) T, ;

NT
0 T
1

1 . N N, ~1_  o
N+ﬂNT01 f(e)f(t + THde N+,Bf2+N+/3f +TL F(Of(t + 7t

0
1 (T T 7 ‘

- ";{i_”ﬁ,f*[ f(t)d{l[wof *J f(e+ 'r‘)dt]}
T LA ¥, ‘

=

1



T

Trgtw o g s s
WeET wepr T

3 T T T
-ﬂ-;{mr,,f[ [F(t) + f(t +7))dt + J f(e)dt I fe + T)dt}
T 3

NT, NT, N7,

If this expression is substituted for ¢,(T) in the definition of Qf(nwr)
then

T

® (nw,) LS. R ¥ (T rdr
- (7o) g | o
wv+pr T\N*+B N+ AT i,

T T
+1—J{—ﬂv— 7 +ﬂ FOf(e + T)de

Tlw+p? a,
1 T T T

- —2 [NTof J [f(t+7) +£(2))dt +J f(t)dt J f(t +T)dt]}cosrw1.7'd‘r
T T, ¥, (1S

Thus, since 1!.1:",3 = 0, taking the limit as T -~ NTo establishes the first
part of the thedrem:

. il
i, ) - ol

Next, consider upper bounds for each of the three last terms in the

expression for (I),,(‘nwr) :

T NTo
N J[LJ f(t)f(t+-r)dt-f2]cosnw.‘:rdr‘
N

N J’T t[/m (1) cos nw;er'r

W+ BT WeAr g
. NTo
. (MAIT,
now,
b il —1\7'11_— Zf: cos ’ Tldr £ 2'8N' A
v+ /Mo NP N + B)?




- HBT, ‘

1 N 1 | N ‘ ‘

-’ITJ’{ A : fz}cos rinTdr = ——é——— f2 cos. z w,Tdr
)

: r’ > = 0 )
N+ pB)? o+ ) CON+B?
and finally . U
l Tl ' F@)f(r + 1)
r! 'r[ fe+r
NTo‘ )

‘ T T T :
- l IEVI(‘,f J' [f(t +'r)‘+f(t)‘]dt +[ f(t)dt J f(t +7‘)d{l} cos M).,Tdrl
¥ 9] .

L T, AT, T,

(WB)T, (MBI, (WA T,
| [ el e
~ (N+8)T, ‘(N + B)T, o

( ﬂ) 0 ° ( ﬁ) 0 NTo‘ (N+ﬁ )2"‘0 NTO
(MBIT, (N+AI Ty ‘ ‘
1 J n ‘
f—— f,dt J 1, dt]- cos w,T| dr
. N " s ()
N+ ﬁ)’Tg w, NT, i *A

P 2+ 2 + ol = f2(_M
TIVHE e s

v+ B)?
Thus
‘ N2 [ n ) B(5N + 28)
@ (nw.) - o[ w,) | < fA—"
T e TWEBTS Y v p?

and Theorem 4 is proved.

A coroll:;ry to Theorem 4 gives the relations between l//,('r) and
\,b,l('r), N = 1, and between d)f(nw.,.) and tl)f(nwo) where 0 < T < T,. For this
investigation set T = yT) or w, = wy/y where 0 <y < 1. Remembering that

13

el



40 = o | A s e - g
Ty "

wherea

7'0 To

f = Tl;-j; fit)de = -Tl——l' f(t + T)dt

then the corollary may be stated as follows.

Corollary:

For f(t) € L,, a periodic function with fundamental frequency w, and

period T, then

lim @ ) = O
Yim @ 0a) = oy

and
i ‘ 2 — 2
@ (nw,) X ¢f<y aw) < Ssfty = Ly
Y
where
f. = max [f(¢t) = max |f{t + T) and 0<7<T,
= <e<Ty, ‘ 0< ST,
Proof:
1 T 1 T T
LR FOUTRR - [ e [ s v mae
0 ™9 0
Ty YTy
1 1
s fO)f(r +1)de + ——-J (t)f(t + 7)dt
m‘[ ! | ST
Ty
T YTy To YTy
1 ‘
- , [J’ f‘(t)dt+J' f(t)d%[[ f(t+7)dt +J' f(t +T)d{|'
0T Ly o A o

14



YTe

1 -1 . 1
e S = [ Fl(E + 7)de
v 2 T
Y 07
0

1 YTy 7Ty YTy

- : {Tofj [f(z +7) + f(t)]dt +J f(t)dt J f(t + ’r)dt}
OTg)" . T r, o ;
Now since
1 T 1 ’YTO no
(bf("w‘r)' = 'I—J k//f('r) cos nw,TdT = WJ' S[lf(’l')‘ cos T_TdT ,
: ) 0

substituting the preceding expression for l//f(’l‘) into <I)f(nw,r) gives

YT, T,
1 1 vy - 1 1
@, (nwy) = ——~f — ) L e J F(F( + 7)de
0 To
T, T
. ‘7 ) T, YT, -
—Tfj [f(t+7) +f(¢))dt - 2{ f(t)dtJ f(t +7)dt 5 cos — 7dr
YTy Ty Ty) T T, Y
1 n 7To nw
= (— a)) + J i 1 (T) cos TdT
f 0 T f1
7? I ¥Ty 4
0
. YT, YT, ”
+ { J’ f(t)f(t + 7)dt cos TdT
OT)? 4 T, 7
. 7T0 'yTo e
- fJ J [Ff(t +7) + f(t)]ldt cos Td7T *+
,y3r1'2
00 T

15



YTy

YTy YTo
1 ‘ nw,
- I J f(t)dt J f(t + T)dt{cos TdT
(T % ) Y

Ty )

and

Li’r;o (D‘f(ncu,r) = (I)!(na)o)

since lim 7 = 1, and the first part of the corollary is established.
-T

Next, confider upper bounds for the individual terms' in the expression

for (I)f(na).’.)

7T ¥T, Ty
1 g, . 1 1l ; e, |
J l/’fl('r) cos —— TdT| = . J [TJ FOYft +7)dt - %] cos — TdT
VTo 7 7 7hg, S0 Y
. T,
1 nay g 1~ .
< 2ff, cos _g.'r dr 5.5_._27_) ofL
2 - )
7T T, 4 Y
1 'YTO ’)’To o, ,y.ro .
—_— J fee)f(t +7)dt cos ——Tdr| < - | (1—7)‘7010; cos — ldr
(’yro) 0 TO ‘y X (’}/Io) [} A
Y=Y 2
< 5 ¥
4
g (o [ rev, 220 -9 O o,
—f j J' [f(t+7) +f(t)]dt cos TdT| < _____3____.J cos — T |dr
372 .
4 To 0 Ty YT,
1 -
ﬁ( ) o’
2
Y

16



and for the final term

YTy YT, YT, o
l I [.J f(t)de J f(t + T)dt} cos —;;-TdT]

T 3 A
(¥T,) To Ty
T
(1 =~ y)%52 7To nwy (1 - )2
< S— co8 —— T1d7T < —0our f:
‘)’3T0 ! 72
The proof of the corollary is completed since
1 ‘ 2(1 = 1 - 2(1 -~ (1-7)2
QH"“r)'_"°leJ < ( 7>f2+7( )f2+ ( 7)f§+( Y) £
yz y 72 ’y 7 .y.'!
(1 - : |
3 ] VIRV RSP I i 2
,},2 ,),4

The power-spectral-density techniques are applicable to non-
stationary processes consisting of member functions which may be reduced
to the form y (t) = 6 _(t) + f(t). For example, consider a non-stationary

process {X(t)} consisting of member functions
x (1) = A (£)g(t)

where K.(t) satisfies Condition [B] and Parts 1 and 2 of Condition [A]
and g(t) satisfies Part 3 of Condition [4]. Then by setting

y,(8) = lnx (1)

6,(t) = In A (1)
and

f(t) = In g(¢)

17



the frequency analysis of the product x_(t) = A_(t)g(t) may be treated

as the analysis of the sum
In A (t) + Ing(t) = Inx () = y (t) = 6 () + f(¢)

providing the dominant frequencies of In xﬂ(t) are the same as those for
x_(t).' This restriction is stated mathematically for functions x_(t),
observed for 0 < ¢ < 2T, satisfying the following theorem.

THEOREM 5

Given x (t) expandable in a Fourier series as

_
<@

%9
x_(t) = —2—' +

n Mg

a, cos nwyt + b'l sin nwypt =

" [1+ z,(1)]
1 L

|

n

where the a and bn are random coefficients, ap > 0, wTT‘= 27, and
Iz.(t)‘ << 1, then the dominant frequencies contained in the set nw, for

n =12, ... are in the same order for x'(t) and ln x'(tL

Proof:
a
)
Set ln x _(t) = In 7; +ln 1+ z_(t)]

where

2 ® i
z (t) = — {32 a cos nw.t + b sin nw,t
] ao T n

a=1 " T

Since |z_(t)| <1 and a, > 0, then In {1 + z (t)] may be expanded in

powers of z _(t) and therefore
In x (t) In — 4
nx = In—
" 2

The condition [z.(!)l << 1 is used to imply that the first term of the

power series is the dominant term:

18



%
In -2— + z.(t)

In x_(t)

% 2 g

In—+—[3 a cos nwt + b sin nw,t]
a - n T n T
0 n=]

which provides the same ordering for the magnitudes of the ai + bf, n>1,

for In x.(t) as for x_(t).

Thus the analysis of x.(t) = k_(t)g(t) may be performed on
y.(t) = In x (t) = 6.(:) + f(t) by the usual methods of taking the
Fourier cosine transform of the autocovariance of y.(t). This is true
because the choice of w, = 27/T for the fundamental frequency of g(t)
carries over into the analysis, since g(t) and f(t) = In g(t) both have

the same fundamental frequency.
Note that the condition lz.(t)[ << 1 is equivalent to
a

[ ©
— >> 3
2 ne}

[a: + bi]%‘

That is, the dc component of the signal must be greater than the maximum
amplitude of the sum of the non-dc component of the signal so that the
Jogarithmic transformation produces a real function which is physically

interpretable.

19



IIT' ADDITIONAL THEOREMS

Consider a periodic function f(t) with fundamental frequency w,

and period T, which is expandable in a Fourier series—i.e.,

f(t) = 7; + 2 a, cos nwyt + b sin nwt

The frequency spectrum of f(¢) may be obtained from the product of the
finite Fourier transform with the finite conjugatée Fourier transform.
That is, as the finite Fourier transform is defined by

To
[ f(t)e i‘nwotdt

0

. 1
F(nwy) = ;;

and as the finite conjugate Fourier transform is defined by
T

0

1 .
F‘(nwo) = 77-[ f(t)e tneotyy
)

the frequency spectrum is given by

a? + b2
[F(nwg) |2 = F(nwp)Fr(nw,) y

For periodic functions f(t)Esz IF(na)07|2 = Qf(nwo) when ¢!(nw0) is
evaluated for f(t) observed over the time interval 0 < t < T,. However,
'F(nwo)lz is functionally different from ¢(nw°), and other methods of
calculating the frequency spectrum of f(t) may be investigated (differing
from the power-spectral-density function described in the previous
sections). It is hoped that these methods can be extended to non-

stationary stochastic processes {Y(t¢)} satisfying Conditions [A] and

[B].
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Consider a theorem which parallels Theorem 4. That is, let f(t)
be observed for 0 < t < T whére T = (N + ﬁ)To, N>1land 0 X 8<1.
Again, define @, T = 27 and let

1' .
1 7 .
F(nw,) = j;'J flt)e'r“Tidy
>
énd
1| :
F*(nw;) = T j fleye inortde
0
Further, since
1 o
Fnw,) = ‘*[f(t)e‘”w‘o'dt
T, )
0.
then
. NTo
n 1 iln/N)wyt
Fl— 5 —— t) C 0 de
(5 ) T, | rewe
: 0
Similarly,
NT,

n 1 ~iln/Nywyt
F‘(—-w) = - f flt)e S0 e
N NT o

0

and the following theorem is stated and proved.

THEOREM 6

Given f(t) periodic with fundamental frequency w, and period T,
and given f(t)eL, for 0 < ¢t £ T, then

N\ N n B(4N + B)
Fnw, ) F*(ne.) - Fl="— &, | F* - e
|F (g ) F* (o) (,, ; ,B) (N B ‘“°> (N + B ‘"°>| ATV Y
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where

fu = o<M‘a<x'r0‘{v|f(t) [}

Proof:
Substituting

Tnw,t

= + 1 )
e cos "w'rt 1 sin naTt

and
e7in®rt = os nwyet = i sin nw,t
into F(nw,.)F‘(an) gives "
1 T 2 1 T
F(an)F"‘(nw‘T) = ' l:;f ftt) cos nwrtdt:l ‘

0 [

NT,

- [____J ’ Nt dt
W+ AT )

f(t) cos N B

1 ANBIT, nwyt
+ |

(N +A)T, J A
NTo

NT

1 0 nCl)ot
N . dt
[(N+ﬁ)T0J FLe) sin gog dt
, 0
1 w+,B)T0 nw t
+m - f(t) Sln‘N+ﬁ

0
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+ [?[ f(t) sin nw,rtdt]
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N2 ‘ :
Fr o) = s (7 (g

w+B)T : 2
1 0 nw, t d]
| —_— ) t
[(N+ﬁ)ro LT AR R
0
w+B)T, 2
1 0 "“"ot d
+ | ——— ! sin t
[(N AT, },T f(t) sin Nt B ]
0
© 1 Mo nwyt .
2[m L f(t) cos N B dt]v
W+BITy wy t
. ..._]‘_.__. [ f(t) cos —n—L— dt]
(N + B)T, r Nt B ]
0
NT,

1 nwot ‘
+‘ (U —— Y .
2[(N + ﬁ)T,,‘JO fle) sin 7y dt]

N8BT, nw. t
. __1_________.[ f(t) sin 0 dt]
W+ AT, | 2 N+ B
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By Schwartz's inequality

1 (~+‘B j To nwo,t 2
(I)?2 = l:——-—-—[ f(t) cos pr dt:|

(N + BT, ;”
-0

(’“’,3)7'0 ‘ W"’ﬂ)To ‘2 ,
A I:‘—}——'J' -[f(t)]zdt] [ ! [ [cos—m—uni'] "{I’

(N + ,3)T0 N +ﬁ)To j Nt
' N1y NT,
and
II)2 = R ‘ in.
(Ir)*. [(N AT, f(t) sin N8 dt:l
‘ - NTy
ws)T (N8BT, .2
1 0 1 0, ont
< e ‘ 129,01 4
= l-(N + BT, I fee)] dt][(lv + AT, J [“?SN +ﬁ] d{l '
. NT, ‘ T,
Thus,

) (N+8)T, ) WwrB) T,
D2+ i< ——— 2(¢)d ——————-J dt |
(I)* +(II) —[(N+IB)T0 . f(t)t][(N+/§)To i t]

0 ) NTo
< f2 A\
2 fu s
N+ 53
Since
nw,t nw,t
‘ <1, <1,
COSN+IB|_ |san+ﬂ‘—
and
lreel <r,



then

‘ 1 NTy newy ¢ : (N+8IT, ot |
L] cam——— | f ) ———— | mssi—— _L
Ilz[(N + 8T, L f(t) con N+ B dt] [(Ni‘ﬁ)To I f(t) cos N+ ﬁdt]

NT,

. o[t Ny o onwgt ]
2[(N Y AT, J; f(t) sin 2=y Z d{l

, ! W+py T, | o
R DR S | iR et dt| | € 4f3
[(N + [3)7‘0 JNT f<t) sin N + ;8 dt] - 4f” (N + /B)Il'
0

and

‘ N \3 ‘ ‘
[yt - () F(N ey (ﬁ? )|

< BN+ B

(N g Tt

As in the case of Theorem 4, a corollary to Theorem 6 exists. The
statement of the corollary follows without proof since the proof parallels
that for the corollary to Theorem 4. ’

Corollary:

Given f(t) periodic with fundamental frequency w, end period T,
and given f(t)eL"for 0<tXT, then

‘ (5 - =)
Flown)retoan) =2 (o (o) | s ) ELLT

where

fuom Max (lfl}, Ty,

—t=Ty



and
0<vy <1

For stochastic processes, consider the process {Y(¢)} containing
member functions y (t) = 9_(t) + f(t) satisfying conditions [A) and

[B] as before; and define a sample function g (t) as follows.

DEFINITION 6

Let a sample function g _{(t) be constructed for each member function
y (t) by

g (t) =y (8) = Ay = O+ f(e) = Ay (' Ap,,)

= 16,0 —Ap ()] * L) — AL ,)

where
) T
Ay (o) ';Iy.(‘)‘dt
0
g T
Aa.(‘) = '; [ O ) de
5
und

1 T
R

The Fourier transform of g (t) for 0 < ¢t < T and for 6 _(t)eL, and
f(t)el, is given by
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1 n X
F.(n) = —J g (t)e ™ TTa
T
0
1 T 1 T
. tnwgt . inwyt
= 7[ [6,(t) =45 (yJe Tt +7j [r(e) - 4, \Je T dt

where @, T = 27; and, similarly, the conjugate transform is given by

T

1 —inw
F*(n) = ?Jg_‘(t‘)e 4‘ 1ty
)
1 T L ! T
1 - 'inw.rt 1 ¢ - :inwrt
= TJ [6,(t) - Ae‘-“)]e dt + TJ [f(e) A,m]e dt
) : 0

The expected value of the power spectrum is given by the mathematical
expectation of the ensemble of the products of the Fourier transform of

each stochastic member function with its conjugate transform—i.e.,

ELF(n)|?) = ELF_(n)F%(n)]

: T 2 T
- E[{‘;“J 9_(t) cos nwrtdt} - 2{}71[ A‘g.( ¢) COs nw.td }‘
0 0
T T 2
. {% J 8. (t) cos antdt} + {% J AH.“) cos nwrtdi} ]
0 3
1 2 vy
+ E[{;‘ j 9‘(t) sin na)Ttd‘t} - 2{;[ Aﬂ.(') sin nwrtdt}
0 0
T T
: {l J 6 (t) sin nw tdt} + {1 J A sin nw tdt}Q]
T i n T T i 6_(t) T

2

T 2 T
1 j (1 .
+ {; J [r(e) ‘Af‘( ”] cos rw.,.tdt} + {;‘f [r(e) "Af(‘)] sin nw.,.tdt}
0 0
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Since E«[G_(t)] = E[Ag (”], the preceding expression reduces to

‘ T 2 T 2
E[IF(h)I"] = F [{%‘J 6 (t) cos nw,,tdt} ] - Ez[ﬁ.(t)] {%J cos nw,.tdt}
0 )
p 2 \ L 2
+E [{F J 6_(t) sin rﬂ).,.tdt} ] -E [9_(:)]‘{;[ sin rw,tdt}
' o B

2

T
1 ,
+ {;[ [f(t) =4, ,)] cos nw.,tdt}
0

T 2
1
+ {?J [f(e) = A4, )] sin nwrtdt}
0
Next, consider
L 2 LT
E [{;J 6. (t) cos m)rtdt} ] = f [— [I (£)8_(7) [cos nwt] [cos m)T]dth]
) LA §
L 2
= E[@E(t)]‘ . {?Icoswrtdt}
0

and, similarly,

2

3 T N 2 T
E [{%J g, (t) sin nw.,.t([t} ] = wa(t)] ) {TLJ sin nw.,.tdt}
0 (]
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Thus,

T 2 T

E[lF(m)|?] = [{%J cos ncvrtdt} + {-;TJ sin nwrtdt} 2] . [sz] - Ez[e]]

0 0
1 ‘
+ {7J [£(t) = Ay )] cos murtdt}‘

0

T 2

1 . .
+ {?L [f(e) = Aﬂ”] sin rwrtdt}

Finally, since w, T = 27

T
1 I 'l forn=0
= | cos nwptdt =
T o 0 forn2>1
K
and .
1" |
; [ sin noptdt = 0 for all n
o

and the following theorem has been proved.

THEORENM 7

For the sample functions of Definition 6, the expected value of
the power spectrum is separable into a stochastic component and a

deterministic component—i.e.,

[P 12 = Egl? + |F (m)]*
where
2 2
“F ‘z _ E[l6']) ~ E [Q] for n = 0
6 0 for n 21
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and

2

: 1
7l - {}.J £(6) = ;)] cos nopedt)

0

{1

+ {=
T

The result stated in this theorem is to be expected since f(t) and the

T

T 2

J (fee) - Af(')] sin nw,rtdt}

0

6,(t) are statistically independent.

In the following discussion, possible extensions for the use of
transform methods are considered for the analysis of non-stationary
deterministic functions f(t)EL2. For example, let f(t), 0 < ¢ < T,
be defined by

2 A
f(t) = a, cos [w(t)t)l = a, cos [a)o <t + t—>:|

where

: : :
w(t) = W, <1+T_> and w, Ty = 27 .
0

2
Ty 2 inwy (t + %—)
1 aylcos w, t'*;f | e 0 de
0 '

1
%
¥

Define a transform by

2
} Lt
"ﬁ)o(t + T—o)
dt

and a conjugate transform by

i

\ T
Fn) = %J ®f(t)e

070

2 2
1¢ 7o -inwo(n;—) 1 (Mo 2 -inw (u'—)
F*(n) = —) f(t)e Wdy = — @, | cos wy \t $ 2 e N T dt .
Ty T T
0 o) 0
Substituting

2 2\ |
¢? 1 ~ iy (:+~_;—,—> iwy (t“%‘*‘) i
cos ahG *'——> = ?; e "y e 0



in F(n) and F*(n)gives

F(n) =

2 .2
T o ¢ T 4
0 L(n"l)wo (H’T—) 1 0 i(n-lw (t*.r )
0q — J e 0 o de
0

t +
TO

NIQR

| —

-

—
LY

and

‘ 2 2
a T, ~i(ntl)w, (e+4- T, ~iln-De, (t44-
0 1 ] 0 T, 1 ("o T
F*(n) = __2_ [__.J [ ( O)dt +‘_f e o( 0> dt:,

T

0“0 0 7o

Completing the square in each exponent,

/s 2 .

t2 t? Ty T, [t Ty T,

— = =t b — - —_— — -—

T, T, 4 4 T, 2 4

then

$i(n+1) (‘+‘2)‘ ti(n+1) S\ i
i(n*l)w, {t+ o i w =+ ti(n+l) -
. ()} YA . tin 0T, 2 e‘ nrliwg 4

) .2 . e 4T\ 2 To
tl(n-l)wo (t‘;— il(n"‘l)wo ﬁ“*“z— i:(n"‘l)on
e 0 = e 0 4

2 Wom(n + 1) Yorr(n - 1)

b d
a =i{ntl)7w/2 ~i{n-1)mw/2
. 01 e 92 e .02 !
F(n) = -{———J e 46 +“——J e dé.,
. A -

and

b d
o i{n+l)m/2 i(n~
F*(n) = __0 e’ " J e-i92 de +i(__l)_‘”/_2 e—i92 d6
2 [Worr(n + 1) Yer(n-1) |

a [

3

—r



where

‘;-VZ'IT(n + 1)

a =
3
b = ;V27T(n + 1)
1 ‘
c = ;¢217(n - 1)
and
3
d = EVZ?T(‘n - 1)
Thus,

b b
"
: 1 :
F(n)F*(n) = —:'{mj [cos 6% + | sin Gz]cﬁj cos 62 - i sin 62)d0

It X4 i
+— J eiezdﬁf e_igzdﬁ + ° J "0 I e'azde
n? -1 n? -1
a ¢ a (-4
1 d d
o J'[cos 6% + i sin ez]dﬁj [cos 62 ~ i sin 62)dB \ .
2m(n = 1) :
L4 L4
- T Cht gy g v
Finally, it can be shown that §

w1 1 2
F(n)F*(n) = — [ - | cos 62d6 ~ cos Bzde]
87 | Yn + 1 vn=-1

a (4

b d

- 1 2
+[ J sin 6%d6 — j sin 92d9] , n>1
ntl]} Yn~ 1)

]



That is, this extension to a transform permits the calculacion of
|F(n)|? for the function f(t) = 0, cos‘wJ(t + tz/To)] in terms of
Fresnel integrals.!

To see that F(n) may be interpreted in terms of a Fourier trans-

form consider

w
] 12
inwy (t*;'—(;; t )

1 T
Flw) = FJ“”‘
0

where w, is a constant. Then, we may write

2

T
-t 1 t inw, o ,
Flw) = 7?J—f(t)e A gy . %rj f(t)[cos aﬁtz + i sin aﬁtzle}nwr‘dt
0 [}
By setting
"x(t) = f(t) cos wltz
y(t) = f(t) sin wltz
and
z(t) = x(t) * iy(e)
then
1 T . )
11,1 t
Fla) = —-J 2(8)e ™ 4y
T .

and F(w) is the Fourier transform of the complex function? z(t).

The preceding analysis suggests considering finite transformations
of the form

l T inw,
Fla = 7] Fere ™o e
0

T 170 2
For n =1, ¢ = d and two of the integrals in F(1)F*(l) are zero. For an =0, F(0)F+(0) = ‘1‘.0'ro fle)de
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where

Pow,
P(¢) = t+ Z tP .
p=2 nwo

The @, are constants to be adjusted to find a “best fit" with non-
stationary functions f(t), 0 < ¢t < T, for a series similar to the Fourier
series. As a first step in this direction, the function F(n) is shown

to be the Fourier transform of the complex function z(t) = x{(t) + iy(t)

where

P I3 P
2(t) = f(t) exp l:l pgz‘ w‘,t":i = f(t) [cos (p§=:2 wpt‘> + sin (p§2 wpt’)]

= x(t) + iy(e)

For f(t)eL,, 0 <t < T, the Fourier transform is represented by

inw.,.t

1
Flw) = ?J z(t)e dt

and a sufficient condition for the existence® of F(w) is that
1 (7
- z(t)ldt < @
T‘J b2ty

0

Consider the modulus of z(t),

P P P
20 | . N ‘
{f' (t) I:cos <p§2 wpt") + i sin <P§2 wpt")] l:cos <p§2 wﬂt”)
P %
=~ i sin ( S ow t”)
p=2 *

Thus, since f(t)eLz,‘ Iz(t)l‘ELz and the transform exists. The existence

of F*(w) is demonstrated in a similar fashion.?

fa(e)| =

0]
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